

    
      
          
            
  
Pallas documentation

Pallas makes querying AWS Athena easy.

It is especially valuable for analyses in Jupyter Notebook,
but it is designed to be generic and usable in any application.

Main features:


	Friendly interface to AWS Athena.


	Caching – local and remote cache for reproducible results.


	Performance – Large results are downloaded directly from S3.


	Pandas integration - Conversion to DataFrame with appropriate dtypes.


	Optional white space normalization for better caching.


	Kills queries on KeyboardInterrupt.




import pallas
athena = pallas.environ_setup()
df = athena.execute("SELECT 'Hello world!'").to_df()





Pallas is hosted at GitHub [http://github.com/akamai/pallas] and
it can be installed from PyPI [https://pypi.org/project/pallas/].

This documentation is available online at Read the Docs [https://pallas.readthedocs.io/].


Table of Contents



	Installation

	Tutorial
	AWS credentials

	Initialization

	Executing queries

	Caching





	API
	Assembly

	Client

	Query information

	Query results

	Caching

	Exceptions





	Development
	Installation

	Configuration

	Tools





	Alternatives
	Intro

	PyAthena
	Pallas vs PyAthena





	AWS Data Wrangler
	Pallas vs AWS Data Wrangler





	boto3





	License

	Changelog
	v0.11.dev

	v0.10 (2022-01-06)

	v0.9 (2021-03-03)

	v0.8 (2020-10-06)

	v0.7 (2020-08-31)

	v0.6 (2020-08-31)

	v0.5 (2020-08-19)

	v0.4 (2020-08-18)

	v0.3 (2020-06-18)

	v0.2 (2020-06-02)

	v0.1 (2020-03-24)










Indices and tables


	Index


	Module Index


	Search Page












            

          

      

      

    

  

    
      
          
            
  
Installation

Pallas requires Python 3.7 or newer. It can be installed using pip:

pip install pallas





When Pandas [https://pandas.pydata.org] are installed, query results can be converted to pandas.DataFrame.

pip install pallas[pandas]









            

          

      

      

    

  

    
      
          
            
  
Tutorial


AWS credentials

Pallas uses boto3 [https://boto3.amazonaws.com/v1/documentation/api/latest/index.html] internally, so it reads AWS credentials [https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html] from the standard locations:


	Shared credential file (~/.aws/credentials)


	Environment variables (AWS_ACCESS_KEY_ID and AWS_SECRET_ACCESS_KEY)


	Instance metadata service when run on an Amazon EC2 instance




The ~/.aws/credentials file can be generated using the AWS CLI.

aws configure





We recommend to use the AWS CLI to check the configuration.
If the AWS CLI is able to authenticate then Pallas should work too.

aws sts get-caller-identity
aws athena list-databases --catalog-name AwsDataCatalog








Initialization

An Athena client can be obtained using the setup() function.
All arguments are optional.

import pallas
athena = pallas.setup(
    # AWS region, read from ~/.aws/config if not specified.
    region=None,
    # Athena (AWS Glue) database.
    database=None,
    # Athena workgroup. Will use default workgroup if omitted.
    workgroup=None,
    # Athena output location, will use workgroup default location if omitted.
    output_location="s3://...",
    # Optional query execution cache.
    cache_remote="s3://...",
    # Optional query result cache.
    cache_local="~/Notebooks/.cache/",
    # Whether to return failed queries from cache. Defaults to False.
    cache_failed=False,
    # Normalize white whitespace for better caching. Enabled by default.
    normalize=True,
    # Kill queries on KeybordInterrupt. Enabled by default.
    kill_on_interrupt=True
)





To avoid hardcoded configuration values, the environ_setup() function
can initialize Athena from environment variables,
corresponding to arguments in the previous example:

export PALLAS_REGION=
export PALLAS_DATABASE=
export PALLAS_WORKGROUP=
export PALLAS_OUTPUT_LOCATION=
export PALLAS_NORMALIZE=true
export PALLAS_KILL_ON_INTERRUPT=true
export PALLAS_CACHE_REMOTE=$PALLAS_OUTPUT_LOCATION
export PALLAS_CACHE_LOCAL=~/Notebooks/.cache/
export PALLAS_CACHE_FAILED=false





athena = pallas.environ_setup()





Pallas uses Python standard logging. You can use
configure_logging() instead of logging.basicConfig()
to enable logging for Pallas only. At the DEBUG level, Pallas emits
logs with query status including an estimated price:

pallas.configure_logging(level="DEBUG")








Executing queries

Use the Athena.execute() method to execute queries:

sql = "SELECT %s id, %s name, %s value"
results = athena.execute(sql, (1, "foo", 3.14))





Pallas also support non-blocking query execution:

query = athena.submit(sql)  # Submit a query and return
query.join()  # Wait for query completion.
results = query.get_results()  # Retrieve results. Joins the query internally.





The result objects provides a list-like interface
and can be converted to a Pandas DataFrame:

df = results.to_df()








Caching

AWS Athena stores query results in S3 and does not delete them, so all past results are cached implicitly.
To retrieve results of a past query, an ID of the query execution is needed.

Pallas can cache in two modes - remote and local:


	In the remote mode, Pallas stores IDs of query executions.
Using that, it can download previous results from S3 when they are available.


	In the local mode, it copies query results. Thanks to that,
locally cached queries can be executed without an internet connection.





Note

Pallas is designed to promote reproducible analyses and data pipelines:


	Using the local caching, it is possible to regularly restart Jupyter
notebooks without waiting for or paying for additional Athena queries.


	Thanks to the remote caching, results can be reproduced at a different
machine by a different person.




Reproducible queries should be deterministic.
For example, if you query data that are ingested regularly,
you should always filter on the date column.

Pallas assumes that your queries are deterministic
and does not invalidate its cache.



Caching configuration can be passed to setup() or environ_setup(),
as shown in the Initialization section.

After the initialization, caching can be customized later using the Athena.cache property:

athena.cache.enabled = True  # Default
athena.cache.read = True  # Can be set to False to write but not read the cache
athena.cache.write = True  # Can be set to False to read but not write the cache
athena.cache.local = "~/Notebooks/.cache/"
athena.cache.remote = "s3://..."
athena.cache.failed = True





Alternatively, the Athena.using() method can override a configuration
for selected queries only:

athena.using(cache_enabled=False).execute(...)





Only SELECT queries are cached.







            

          

      

      

    

  

    
      
          
            
  
API

This page describes the public API of the Pallas library.

All public functions and classes are imported to the top level pallas module.
Imports from internals of the package are not recommended and can break in future.


Assembly

To construct an Athena client, use setup() or environ_setup() functions.


	
setup(*, region=None, database=None, workgroup=None, output_location=None, cache_local=None, cache_remote=None, cache_failed=False, normalize=True, kill_on_interrupt=True)

	Setup an Athena client.

All configuration options can be given to this method,
but many of them can be overridden after the client is constructed.


	Parameters

	
	region (str | None) – an AWS region.
By default, region from AWS config (~/.aws/config) is used.


	database (str | None) – a name of Athena database.
Can be overridden in SQL.


	workgroup (str | None) – a name of Athena workgroup.
Workgroup can set resource limits or override output location.
Defaults to the Athena default workgroup.


	output_location (str | None) – an output location at S3 for query results.
Optional if an output location is specified for the workgroup.


	cache_local (str | None) – an URI of a local cache.
Both results and query execution IDs are stored in the local cache.


	cache_remote (str | None) – an URI of a remote cache.
Query execution IDs without results are stored in the remote cache.


	cache_failed (bool) – whether to return failed queries found in cache.


	normalize (bool) – whether to normalize queries before execution.


	kill_on_interrupt (bool) – whether to kill queries on KeyboardInterrupt.






	Returns

	a new instance of Athena client



	Return type

	Athena










	
environ_setup(environ=None, *, prefix='PALLAS')

	Setup an Athena client from environment variables.

Reads the following environment variables:

export PALLAS_REGION=
export PALLAS_DATABASE=
export PALLAS_WORKGROUP=
export PALLAS_OUTPUT_LOCATION=
export PALLAS_NORMALIZE=true
export PALLAS_KILL_ON_INTERRUPT=true
export PALLAS_CACHE_REMOTE=$PALLAS_OUTPUT_LOCATION
export PALLAS_CACHE_LOCAL=~/Notebooks/.cache/





Configuration from the environment variables can be overridden
after the client is constructed.


	Parameters

	
	environ (Mapping[str, str] | None) – A mapping object representing the string environment.
Defaults to os.environ.


	prefix (str) – A prefix of environment variables






	Returns

	a new instance of Athena client



	Return type

	Athena










	
configure_logging(*, level=20, stream=<_io.TextIOWrapper name='<stdout>' mode='w' encoding='UTF-8'>, **kwargs)

	Do basic configuration for the logging system.

Calls logging.basicConfig() internally, but:


	Sets level to the “pallas” logger only


	Log level default to “INFO:


	stream defaults to sys.stdout instead of sys.stderr




Can be safely called no matter whether logging was already configured:


	If logging was already configured, this function just sets
a level for the “pallas” logger.


	If logging was not configured yet, it enabled logging to stdout.





	Parameters

	
	level (int | str) – Set the “pallas” logger to the specified level.


	stream (TextIO) – Use the specified stream to initialize the StreamHandler.


	kwargs – passed to logging.basicConfig()






	Return type

	None












Client

The Athena class is a facade to all functionality offered by the library.

In the most common scenario, you may need only its execute() method.
If you need to submit queries in a non-blocking fashion, you can use the
submit() method, which returns a Query instance.
The same class is also returned by get_query() method,
which can be useful if you want to get back to queries executed in the past.


	
class Athena(proxy)

	Athena client.

Provides methods to execute SQL queries in AWS Athena,
with an optional caching and other helpers.

Can be used as a blocking or a non-blocking client.

Use setup() or environ_setup() to construct
this class without touching Pallas internals.


	Parameters

	proxy – an internal proxy to execute queries






	
static quote(value)

	Quote a scalar value for an SQL expression.

Parametrized queries should be preferred to explicit quoting.

Following Python types can be quoted to an SQL expressions:


	None – SQL NULL


	str


	int, including subclasses of numbers.Integral


	float, including subclasses or numbers.Real


	Decimal – SQL DECIMAL


	datetime.date – SQL DATE


	datetime.datetime – SQL TIMESTAMP


	bytes – SQL VARBINARY





	Parameters

	value (Union[None, str, float, numbers.Real, decimal.Decimal, bytes, datetime.date]) – Python value



	Returns

	an SQL expression



	Return type

	str










	
database: str | None = None

	Name of Athena database to be be queried.

Can be overridden in SQL.






	
workgroup: str | None = None

	Name of Athena workgroup.

Workgroup can set resource limits or override output location.
When None, defaults to the Athena default workgroup.






	
output_location: str | None = None

	URI of output location on S3.

Optional if an output location is specified for workgroup.






	
normalize: bool = True

	Whether to normalize queries before execution.






	
kill_on_interrupt: bool = True

	Whether to kill queries on KeyboardInterrupt






	
property cache

	Cache implementation.

It is possible to update properties of the cache
attribute to reconfigure caching in place.

Alternatively, the using() method can apply
a new configuration without affecting an existing instance.


	Return type

	AthenaCache










	
using(*, database=None, workgroup=None, output_location=None, normalize=None, kill_on_interrupt=None, cache_enabled=None, cache_read=None, cache_write=None, cache_failed=None)

	Crate a new instance with an updated configuration.

This method can be useful if you need to override a configuration
for one query, but you do not want to affect future queries.


	Parameters

	
	database (str | None) – name of Athena database to be be queried.


	workgroup (str | None) – name of Athena workgroup.


	output_location (str | None) – URI of output location on S3.


	normalize (bool | None) – whether to normalize queries before execution.


	kill_on_interrupt (bool | None) – whether to kill queries on KeyboardInterrupt


	cache_enabled (bool | None) – whether a cache should be used.


	cache_read (bool | None) – whether a cache should be read.


	cache_write (bool | None) – whether a cache should be written.


	cache_failed (bool | None) – whether to return failed queries found in cache.






	Returns

	an updated copy of this client



	Return type

	Athena










	
execute(operation, parameters=None)

	Execute a query and return results.

This is a blocking method that waits until the query finishes.

Cached results or results from an existing query can be returned,
if the caching was configured. Only SELECT queries are cached.

Raises AthenaQueryError if the query fails.


	Parameters

	
	operation (str) – an SQL query to be executed
Can contain %s or %(key)s placeholders for substitution
by parameters.


	parameters (Union[None, Tuple[SQL_SCALAR, ..], Mapping[str, SQL_SCALAR]]) – parameters to substitute in operation.
All substitute parameters are quoted appropriately.
See the quote() method for a supported parameter types.






	Returns

	query results



	Return type

	pallas.results.QueryResults










	
submit(operation, parameters=None)

	Submit a query and return.

This is a non-blocking method that starts a query and returns.
Returns a Query instance for monitoring query execution
and downloading results later.

An existing query can be returned, if the caching was configured.
Only SELECT queries are cached.


	Parameters

	
	operation (str) – an SQL query to be executed
Can contain %s or %(key)s placeholders for substitution
by parameters.


	parameters (Union[None, Tuple[SQL_SCALAR, ..], Mapping[str, SQL_SCALAR]]) – parameters to substitute in operation.
All substitute parameters are quoted appropriately.
See the quote() method for a supported parameter types.






	Returns

	a query instance



	Return type

	pallas.client.Query










	
get_query(execution_id)

	Get a previously submitted query execution.

This method can be used to retrieve a query executed in the past.
Because Athena stores results in S3 and does not delete them by default,
it is possible to download results until they are manually deleted.


	Parameters

	execution_id (str) – an Athena query execution ID.



	Returns

	a query instance



	Return type

	pallas.client.Query














	
class Query(execution_id, *, proxy, cache)

	Athena query

Provides access to one query execution.
It can be used to monitor status of the query results
or retrieving results when the execution finishes.

Instances of this class are returned by Athena.submit()
and Athena.get_query() methods.
You should not need to create this class directly.


	Parameters

	
	execution_id – Athena query execution ID.


	proxy – an internal proxy to execute queries


	cache – a cache instance









	
backoff: Iterable[int] = <pallas.utils.Fibonacci object>

	Delays in seconds between for checking query status.






	
kill_on_interrupt: bool = False

	Whether to kill this query on KeyboardInterrupt

Initially set to Athena.kill_on_interrupt.






	
property execution_id

	Athena query execution ID.

This ID can be used to retrieve this query later using
the Athena.get_query() method.






	
get_info()

	Retrieve information about this query execution.

Returns a status of this query with other information.


	Return type

	pallas.info.QueryInfo










	
get_results()

	Download results of this query execution.

Cached results can be returned, if the caching was configured.
Only SELECT queries are cached.

Waits until this query execution finishes and downloads results.
Raises AthenaQueryError if the query failed.


	Return type

	pallas.results.QueryResults










	
kill()

	Kill this query execution.

This is a non-blocking operation.
It does not wait until the query is killed.


	Return type

	None










	
join()

	Wait until this query execution finishes.

Raises AthenaQueryError if the query failed.


	Return type

	None
















Query information

Information about query execution are returned as QueryInfo instances.
If you call Query.get_info() multiple times,
it can return different information as the query execution proceeds.


	
class QueryInfo(data)

	Information about query execution.

Instances are returned by the Query.get_info() method.


	Parameters

	data – data returned by Athena GetQueryExecution API method.






	
__str__()

	Return summary info about the query execution.

This is included in logs generated by the Athena client.


	Return type

	str










	
property execution_id

	ID od the query execution.






	
property sql

	SQL query executed.






	
property output_location

	URI of output location on S3 for the query






	
property database

	Name of database.






	
property finished

	Whether the query execution finished.






	
property succeeded

	Whether the query execution finished successfully.






	
property state

	State of the query execution.






	
property state_reason

	Reason of the state of the query execution.






	
property scanned_bytes

	Data scanned by Athena.






	
property execution_time

	Time spent by Athena.






	
check()

	Raises AthenaQueryError (or its subclass) if the query failed.

Does not raise if the query is still running.


	Return type

	None
















Query results

Results of query executions are encapsulated by the QueryResults class.


	
class QueryResults(column_names, column_types, data)

	Collection of Athena query results.

Implements a list-like interface for accessing individual records.
Alternatively, can be converted to pandas.DataFrame
using the to_df() method.


	
__getitem__(index)

	Return one result or slice of results.

Records are returned as mappings from column names to values.


	Parameters

	index (int | slice) – 



	Return type

	QueryRecord | Sequence[QueryRecord]










	
__len__()

	Return count of this results.


	Return type

	int










	
classmethod load(stream)

	Deserialize results from a text stream.


	Parameters

	stream (TextIO) – 



	Return type

	pallas.results.QueryResults










	
save(stream)

	Serialize results to a text stream.


	Parameters

	stream (TextIO) – 



	Return type

	None










	
property column_names

	List of column names.






	
property column_types

	List of column types.






	
to_df(dtypes=None)

	Convert this results to pandas.DataFrame.


	Parameters

	dtypes (Mapping[str, object] | None) – 



	Return type

	pd.DataFrame
















Caching


	
class AthenaCache

	Caches queries and its results.

Athena always stores results in S3, so it is possible
to retrieve past results without manually copying data.

This class can hold a reference to two instances of cache storage:


	local, which caches both query execution IDs and query results


	remote, which cache query execution IDs only.




It is possible to configure one the backends, both of them,
or none of them.

Queries cached in the local storage can be executed without
an internet connection.
Queries cached in the remote storage are not executed twice,
but results have to be downloaded from AWS.

In theory, it is possible to use remote backend for the local
cache (or vice versa), but we assume that the local cache
is actually stored locally

Instance of this class is returned by the Athena.cache property.
It can be updated to reconfigure the caching.


	
enabled: bool = True

	Can be set to False to disable caching completely.

Can be updated to enable or disable the caching.






	
read: bool = True

	Can be set to False to disable reading the cache.

Can be updated to reconfigure the caching.






	
write: bool = True

	Can be set to False to disable writing the cache.

Can be updated to reconfigure the caching.






	
failed: bool = False

	Whether to return failed queries found in cache.

When this is false, failed queries found in cache are ignored.






	
property local

	URI of storage for local cache.

Can be updated to reconfigure the caching.






	
property remote

	URI of storage for remote cache.

Can be updated to reconfigure the caching.






	
load_execution_id(database, sql)

	Retrieve cached query execution ID for the given SQL.

Looks into both the local and the remote storage.


	Parameters

	
	database (str | None) – 


	sql (str) – 






	Return type

	str | None










	
save_execution_id(database, sql, execution_id)

	Store cached query execution ID for the given SQL.

Updates both the local and the remote storage.


	Parameters

	
	database (str | None) – 


	sql (str) – 


	execution_id (str) – 






	Return type

	None










	
has_results(execution_id)

	Checks whether results are cached for the given execution ID.

Looks into the local storage only.


	Parameters

	execution_id (str) – 



	Return type

	bool










	
load_results(execution_id)

	Retrieve cached results for the given execution ID.

Looks into the local storage only.


	Parameters

	execution_id (str) – 



	Return type

	QueryResults | None










	
save_results(execution_id, results)

	Store cached results for the given SQL.

Updates the local storage only.


	Parameters

	
	execution_id (str) – 


	results (pallas.results.QueryResults) – 






	Return type

	None
















Exceptions

Pallas can raise AthenaQueryError when a query fails.
For transport errors (typically connectivity problems or authorization failures),
boto3 exceptions bubble unmodified.


	
class AthenaQueryError(execution_id, state, state_reason)

	Athena query failed.


	
state: str

	State of the query execution (FAILED or CANCELLED)






	
state_reason: str | None

	Reason of the state of the query execution.






	
__str__()

	Report query state with its reason.


	Return type

	str














	
class DatabaseNotFoundError(execution_id, state, state_reason)

	Bases: pallas.exceptions.AthenaQueryError

Athena database does not exist.

Pallas maps string errors returned by Athena to exception classes.






	
class TableNotFoundError(execution_id, state, state_reason)

	Bases: pallas.exceptions.AthenaQueryError

Athena table does not exist.

Pallas maps string errors returned by Athena to exception classes.











            

          

      

      

    

  

    
      
          
            
  
Development


Installation

Pallas can be installed with development dependencies using pip:

pip install -e .[dev]








Configuration

For integration test to run, access to AWS resources has to be configured.

export TEST_PALLAS_REGION=            # AWS region, can be also specified in ~/.aws/config
export TEST_PALLAS_DATABASE=          # Name of Athena database
export TEST_PALLAS_WORKGROUP=         # Optional
export TEST_PALLAS_OUTPUT_LOCATION=   # s3:// URI





If the above environment variables are not defined, integration tests will be skipped.




Tools


	Code is checked with flake8 [https://flake8.pycqa.org] and Mypy [http://mypy-lang.org].


	Tests are run using pytest [https://docs.pytest.org/].


	Code is formatted using Black [https://black.readthedocs.io] and isort [https://pycqa.github.io/isort/].


	Documentation is built using Sphinx [https://www.sphinx-doc.org/].




Tox [https://tox.readthedocs.io/] can run the above tools:

tox -e format
tox --parallel











            

          

      

      

    

  

    
      
          
            
  
Alternatives

PyAthena [https://github.com/laughingman7743/PyAthena] and AWS Data Wrangler [https://github.com/awslabs/aws-data-wrangler] are good alternatives to Pallas.
They are more widespread and presumably more mature than Pallas.


Intro

The main benefit of Pallas is the powerful caching designed
for workflows in Jypyter Notebook. Thanks to the local cache,
it is possible to restart notebooks often without waiting for data.
The cache in S3 allows to reproduce results from teammates
without incurring additional costs.

Pallas offers small but useful helpers.
Query normalization allows to write nicer (indented) code without impact on caching.
Estimated price in logs and kill on KeyboardInterrupt can help you to control costs.

Pallas has an opinionated API,
which does not implement Python DB API nor copies boto3 [https://boto3.amazonaws.com/v1/documentation/api/latest/index.html].


	Unlike Python DB API, Pallas interface embraces asynchronous execution.
It allows to retrieve past queries by their ID and download old results.


	Pallas does not follow procedural style of boto3.
A client object holds all necessary configuration,
and query objects encapsulates everything related to query executions.







PyAthena

PyAthena [https://github.com/laughingman7743/PyAthena] is a Python DB API 2.0 (PEP 249) compliant client for Amazon Athena.
It is integrated with Pandas and SQLAlchemy.


Pallas vs PyAthena


	PyAthena is older and more popular.


	Pallas does not offer Python DB API or SQLAlchemy integration.


	PyAthena uses a distinct cursor type for execution in a background thread.
Pallas can submit a query without waiting for results and
offers a Query class for monitoring or joining the query.


	PyAthena can list last N queries when looking for cached results.
Pallas can cache queries locally and to S3,
so the cache is unlimited and can work offline.


	PyAthena downloads results directly from S3 only if PandasCursor is used.


	PyAthena uses Pandas for reading CSV files.
Pallas implements own CSV parser with explicit mapping
from Athena types to Pandas types.


	Pallas does not have helpers for creating new tables.









AWS Data Wrangler

AWS Data Wrangler [https://github.com/awslabs/aws-data-wrangler] integrates Pandas with many AWS services, including Athena.

Interface of its Athena client is very similar to the boto3 API.
Function names copy function methods from boto3,
but invocation is simplified thanks to flattened arguments.

AWS Data Wrangler uses an interesting trick to obtain results in Parquet format.
Its CTAS approach rewrites SELECT queries to CREATE TABLE statements,
and then reads Parquet output from S3.
Advantages of the CTAS approach are performance
and handling of complex types that cannot be read from CSV.


Pallas vs AWS Data Wrangler


	AWS Data Wrangler is a part of AWS Labs
and is managed by AWS Professional Services.


	Pallas does not offer the CTAS approach, but it downloads CSV files from S3.
The main performance improvement comes from bypassing Athena API.
CSV parsing can be slower than reading Parquet, but this difference
should be negligible compared to the time spent downloading data.


	AWS Data Wrangler lists last N queries when looking for cached results.
Pallas can cache queries locally and to S3,
so the cache is unlimited and can work offline.


	AWS Data Wrangler uses on pyarrow for reading Parquet files
and Pandas for reading CSV files.
Pallas implements own CSV parser with explicit mapping
from Athena types to Pandas types.


	Pallas does not mimic boto3 API, it provides object interface instead.


	Pallas misses helpers to call MSCK REPAIR TABLE or
create an S3 bucket for AWS results.









boto3

boto3 [https://boto3.amazonaws.com/v1/documentation/api/latest/index.html] is the official AWS SDK for Python. Pallas uses boto3 internally.

Querying Athena using boto3 directly is complicated and requires a lot of boilerplate code.







            

          

      

      

    

  

    
      
          
            
  
License

Copyright 2020 Akamai Technologies, Inc

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.









            

          

      

      

    

  

    
      
          
            
  
Changelog


v0.11.dev

Nothing yet.




v0.10 (2022-01-06)


	Failed or cancelled queries found in cached are ignored.
Export PALLAS_CACHE_FAILED=true to use failed queries from the cache.


	A small optimization to avoid duplicate check of local cache.


	Use PEP 585 type annotations.


	Test with Python 3.9 and Python 3.10


	Test environment variables consistent with runtime environment variables.


	Refactor and cleanup of tests.







v0.9 (2021-03-03)


	Better logging. Log summary at INFO level and details at DEBUG level.
Add a helper for logging configuration.


	Include QueryExecutionId in exception messages.


	Fix conversion because Athena sometimes returns “real” instead of “float”.







v0.8 (2020-10-06)


	Remove deprecated ignore_cache parameter.


	Fix query execution ID not cached locally when cached remotely.







v0.7 (2020-08-31)


	Export new exceptions introduced v0.6 to the top level module.







v0.6 (2020-08-31)


	Raise AthenaQueryError subclasses when a database or a table is not found.


	Add more configuration options to the Athena.using() method.







v0.5 (2020-08-19)


	Do not substitute parameters (require quoted percent signs) when no parameters are given.







v0.4 (2020-08-18)


	Add support for parametrized queries.


	More options for cache configuration.


	Allow to override configuration of the Athena class after it is initialized.


	Refactored implementation from layered decorators to one class using specialized  helpers.


	New documentation.


	All public (documented) functions and classes are available the top-level module.







v0.3 (2020-06-18)


	Athena and Query classes available from the top-level module (useful for type hints).


	AthenaQueryError from the top-level module.


	Fix: SELECT queries cached only when uppercase.


	Fix: Queries not killed on KeyboardInterrupt.







v0.2 (2020-06-02)


	Cache SELECT statements only (starting with SELECT or WITH).


	Preserve empty lines in the middle of normalized queries.







v0.1 (2020-03-24)


	Initial release.










            

          

      

      

    

  

    
      
          
            

   Python Module Index


   
   p
   


   
     		 	

     		
       p	

     
       	[image: -]
       	
       pallas	
       

     
       	
       	   
       pallas.assembly	
       

     
       	
       	   
       pallas.caching	
       

     
       	
       	   
       pallas.client	
       

     
       	
       	   
       pallas.exceptions	
       

     
       	
       	   
       pallas.info	
       

     
       	
       	   
       pallas.results	
       

   



            

          

      

      

    

  

    
      
          
            

Index



 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | H
 | J
 | K
 | L
 | M
 | N
 | O
 | P
 | Q
 | R
 | S
 | T
 | U
 | W
 


_


  	
      	__getitem__() (QueryResults method)


      	__len__() (QueryResults method)


  

  	
      	__str__() (AthenaQueryError method)

      
        	(QueryInfo method)


      


  





A


  	
      	Athena (class in pallas.client)


  

  	
      	AthenaCache (class in pallas.caching)


      	AthenaQueryError (class in pallas.exceptions)


  





B


  	
      	backoff (Query attribute)


  





C


  	
      	cache() (Athena property)


      	check() (QueryInfo method)


  

  	
      	column_names() (QueryResults property)


      	column_types() (QueryResults property)


      	configure_logging() (in module pallas.assembly)


  





D


  	
      	database (Athena attribute)


  

  	
      	database() (QueryInfo property)


      	DatabaseNotFoundError (class in pallas.exceptions)


  





E


  	
      	enabled (AthenaCache attribute)


      	environ_setup() (in module pallas.assembly)


      	execute() (Athena method)


  

  	
      	execution_id() (Query property)

      
        	(QueryInfo property)


      


      	execution_time() (QueryInfo property)


  





F


  	
      	failed (AthenaCache attribute)


  

  	
      	finished() (QueryInfo property)


  





G


  	
      	get_info() (Query method)


  

  	
      	get_query() (Athena method)


      	get_results() (Query method)


  





H


  	
      	has_results() (AthenaCache method)


  





J


  	
      	join() (Query method)


  





K


  	
      	kill() (Query method)


  

  	
      	kill_on_interrupt (Athena attribute)

      
        	(Query attribute)


      


  





L


  	
      	load() (QueryResults class method)


      	load_execution_id() (AthenaCache method)


  

  	
      	load_results() (AthenaCache method)


      	local() (AthenaCache property)


  





M


  	
      	
    module

      
        	pallas.assembly


        	pallas.caching


        	pallas.client


        	pallas.exceptions


        	pallas.info


        	pallas.results


      


  





N


  	
      	normalize (Athena attribute)


  





O


  	
      	output_location (Athena attribute)


  

  	
      	output_location() (QueryInfo property)


  





P


  	
      	
    pallas.assembly

      
        	module


      


      	
    pallas.caching

      
        	module


      


      	
    pallas.client

      
        	module


      


  

  	
      	
    pallas.exceptions

      
        	module


      


      	
    pallas.info

      
        	module


      


      	
    pallas.results

      
        	module


      


  





Q


  	
      	Query (class in pallas.client)


      	QueryInfo (class in pallas.info)


  

  	
      	QueryResults (class in pallas.results)


      	quote() (Athena static method)


  





R


  	
      	read (AthenaCache attribute)


  

  	
      	remote() (AthenaCache property)


  





S


  	
      	save() (QueryResults method)


      	save_execution_id() (AthenaCache method)


      	save_results() (AthenaCache method)


      	scanned_bytes() (QueryInfo property)


      	setup() (in module pallas.assembly)


      	sql() (QueryInfo property)


  

  	
      	state (AthenaQueryError attribute)


      	state() (QueryInfo property)


      	state_reason (AthenaQueryError attribute)


      	state_reason() (QueryInfo property)


      	submit() (Athena method)


      	succeeded() (QueryInfo property)


  





T


  	
      	TableNotFoundError (class in pallas.exceptions)


  

  	
      	to_df() (QueryResults method)


  





U


  	
      	using() (Athena method)


  





W


  	
      	workgroup (Athena attribute)


  

  	
      	write (AthenaCache attribute)


  







            

          

      

      

    

  nav.xhtml

    
      Table of Contents


      
        		
          Pallas documentation
        


        		
          Installation
        


        		
          Tutorial
          
            		
              AWS credentials
            


            		
              Initialization
            


            		
              Executing queries
            


            		
              Caching
            


          


        


        		
          API
          
            		
              Assembly
            


            		
              Client
            


            		
              Query information
            


            		
              Query results
            


            		
              Caching
            


            		
              Exceptions
            


          


        


        		
          Development
          
            		
              Installation
            


            		
              Configuration
            


            		
              Tools
            


          


        


        		
          Alternatives
          
            		
              Intro
            


            		
              PyAthena
              
                		
                  Pallas vs PyAthena
                


              


            


            		
              AWS Data Wrangler
              
                		
                  Pallas vs AWS Data Wrangler
                


              


            


            		
              boto3
            


          


        


        		
          License
        


        		
          Changelog
          
            		
              v0.11.dev
            


            		
              v0.10 (2022-01-06)
            


            		
              v0.9 (2021-03-03)
            


            		
              v0.8 (2020-10-06)
            


            		
              v0.7 (2020-08-31)
            


            		
              v0.6 (2020-08-31)
            


            		
              v0.5 (2020-08-19)
            


            		
              v0.4 (2020-08-18)
            


            		
              v0.3 (2020-06-18)
            


            		
              v0.2 (2020-06-02)
            


            		
              v0.1 (2020-03-24)
            


          


        


      


    
  

_static/file.png





_static/minus.png





_static/plus.png





